Article 1318

Title of the article

THE TWO-DIMENSIONAL INVERSE SCALAR PROBLEM OF DIFFRACTION BY AN INHOMOGENEOUS OBSTACLE
WITH A PIECEWISE CONTINUOUS REFRACTIVE INDEX 

Authors

Smirnov Yuriy Gennad'evich, Doctor of physical and mathematical sciences, professor, head of sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: mmm@pnzgu.ru
Tsupak Aleksey Aleksandrovich, Candidate of physical and mathematical sciences, associate professor, sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: mmm@pnzgu.ru 

Index UDK

517.968, 517.983.37 

DOI

10.21685/2072-3040-2018-3-1 

Abstract

Background. The aim of this work is theoretical study of the two-dimensional inverse scalar problem of diffraction by an inhomogeneous obstacle characterized with a piecewise continuous refractive index.
Material and methods. The original boundary value problem in the quasiclassical formulation is reduced to a system of integral equations; the properties of the latter system are studied using potential theory and Fourier transform.
Results. The integral formulation of the inverse diffraction problem is proposed; uniqueness of a piecewise constant solution to the Fredholm integral equation of the first type is established; novel two-step method for solving the inverse problem is proposed.
Conclusions. the proposed method and obtained results can be applied for solving two-dimensional problems of near-field tomography. 

Key words

two-dimensional inverse scattering problem, reconstruction of piecewise continuous refractive index, integral equations, uniqueness of solutions 

 Download PDF
References

1. Eremin Yu. A., Zakharov E. V. O nekotorykh pryamykh i obratnykh zadachakh difraktsii (Dopolnenie k kn.: D. Kolton, R. Kress. Metody integral'nykh uravneniy v teorii rasseyaniya) [On some direct and reverse diffraction problems (Supplement to the book by D. Kolton, R. Kress. Methods of integral equations in the scattering theory)]. Moscow: Mir, 1987, pp. 290–309.
2. Colton D., Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. Berlin, Heidelberg: Springer-Verlag, 2013, 406 p.
3. Cakoni F., Colton D. Qualitative Methods in Inverse Scattering Theory. Berlin, Heidelberg: Springer-Verlag, 2006, 277 p.
4. Bakushinsky A. B., Kokurin M. Yu. Iterative Methods for Approximate Solution of Inverse Problems. New York: Springer, 2004, 298 p.
5. Beilina L., Klibanov M. Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems. New York: Springer, 2012, 407 p.
6. Kabanikhin S. I., Satybaev A. D., Shishlenin M. A. Direct Methods of Solving Multidimensional Inverse Hyperbolic Problems. Utrecht: VSP, 2004, 180 p.
7. Evstigneev R. O., Medvedik M. Yu., Smirnov Yu. G., Tsupak A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2017, no. 4 (44), pp. 3–17.
8. Vladimirov V. S. Uravneniya matematicheskoy fiziki [Equations of mathematical physics]. Moscow: Nauka, 1981, 512 p.
9. Kolton D., Kress R. Metody integral'nykh uravneniy v teorii rasseyaniya [Methods of integral equations in the scattering theory]. Moscow: Mir, 1987, 312 p.
10. Tsupak A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fizikomatematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2014, no. 1 (29), pp. 30–38.
11. Ladyzhenskaya O. A., Ural'tseva N. N. Lineynye i kvazilineynye uravneniya ellipticheskogo tipa [Linear and quasilinear elliptic equations]. Moscow: Nauka, 1964, 538 p.
12. Agranovich M. S. Sobolevskie prostranstva, ikh obobshcheniya i ellipticheskie zadachi v oblastyakh s gladkoy i lipshitsevoy granitsey [Sobolev spaces, their generalizations and elliptic problems in areas with smooth and Lipschitz boundaries]. Moscow:
MTsNMO, 2013, 379 p.
13. Natterer F. Matematicheskie aspekty komp'yuternoy tomografii [Mathematical aspects of computed tomography]. Moscow: Mir, 1990, 288 p.
14. Gradshteyn I. S., Ryzhik I. M. Tablitsy integralov, summ, ryadov i proizvedeniy [Tables of integrals, sums, series and products]. Moscow: Fizmatgiz, 1963, 1100 p.

 

Дата создания: 18.03.2019 09:41
Дата обновления: 18.03.2019 10:31